Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.707
Filtrar
1.
Sci Adv ; 10(19): eadl4529, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718120

RESUMO

Polycomb repressive complexes 1 and 2 (PRC1 and 2) are required for heritable repression of developmental genes. The cis- and trans-acting factors that contribute to epigenetic inheritance of mammalian Polycomb repression are not fully understood. Here, we show that, in human cells, ectopically induced Polycomb silencing at initially active developmental genes, but not near ubiquitously expressed housekeeping genes, is inherited for many cell divisions. Unexpectedly, silencing is heritable in cells with mutations in the H3K27me3 binding pocket of the Embryonic Ectoderm Development (EED) subunit of PRC2, which are known to disrupt H3K27me3 recognition and lead to loss of H3K27me3. This mode of inheritance is less stable and requires intact PRC2 and recognition of H2AK119ub1 by PRC1. Our findings suggest that maintenance of Polycomb silencing is sensitive to local genomic context and can be mediated by PRC1-dependent H2AK119ub1 and PRC2 independently of H3K27me3 recognition.


Assuntos
Inativação Gênica , Histonas , Proteínas do Grupo Polycomb , Ubiquitinação , Humanos , Histonas/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/genética , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 1/genética , Genoma Humano , Epigênese Genética , Mutação
2.
Nucleic Acids Res ; 52(8): 4409-4421, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587197

RESUMO

Gene fusions and their chimeric products are commonly linked with cancer. However, recent studies have found chimeric transcripts in non-cancer tissues and cell lines. Large-scale efforts to annotate structural variations have identified gene fusions capable of generating chimeric transcripts even in normal tissues. In this study, we present a bottom-up approach targeting population-specific chimeric RNAs, identifying 58 such instances in the GTEx cohort, including notable cases such as SUZ12P1-CRLF3, TFG-ADGRG7 and TRPM4-PPFIA3, which possess distinct patterns across different ancestry groups. We provide direct evidence for an additional 29 polymorphic chimeric RNAs with associated structural variants, revealing 13 novel rare structural variants. Additionally, we utilize the All of Us dataset and a large cohort of clinical samples to characterize the association of the SUZ12P1-CRLF3-causing variant with patient phenotypes. Our study showcases SUZ12P1-CRLF3 as a representative example, illustrating the identification of elusive structural variants by focusing on those producing population-specific fusion transcripts.


Assuntos
Fusão Gênica , Humanos , Proteínas de Neoplasias/genética , Polimorfismo Genético , Proteínas de Fusão Oncogênica/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , RNA/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Canais de Cátion TRPM/genética , Neoplasias/genética
3.
Cell Rep ; 43(4): 114090, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607915

RESUMO

Gene repression by the Polycomb pathway is essential for metazoan development. Polycomb domains, characterized by trimethylation of histone H3 lysine 27 (H3K27me3), carry the memory of repression and hence need to be maintained to counter the dilution of parental H3K27me3 with unmodified H3 during replication. Yet, how locus-specific H3K27me3 is maintained through replication is unclear. To understand H3K27me3 recovery post-replication, we first define nucleation sites within each Polycomb domain in mouse embryonic stem cells. To map dynamics of H3K27me3 domains across the cell cycle, we develop CUT&Flow (coupling cleavage under target and tagmentation with flow cytometry). We show that post-replication recovery of Polycomb domains occurs by nucleation and spreading, using the same nucleation sites used during de novo domain formation. By using Polycomb repressive complex 2 (PRC2) subunit-specific inhibitors, we find that PRC2 targets nucleation sites post-replication independent of pre-existing H3K27me3. Thus, competition between H3K27me3 deposition and nucleosome turnover drives both de novo domain formation and maintenance during every cell cycle.


Assuntos
Ciclo Celular , Histonas , Complexo Repressor Polycomb 2 , Animais , Camundongos , Histonas/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Metilação , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/genética , Domínios Proteicos , Nucleossomos/metabolismo
4.
Nat Commun ; 15(1): 3452, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658543

RESUMO

Mutations in chromatin regulators are widespread in cancer. Among them, the histone H3 lysine 27 methyltransferase Polycomb Repressive Complex 2 (PRC2) shows distinct alterations according to tumor type. This specificity is poorly understood. Here, we model several PRC2 alterations in one isogenic system to reveal their comparative effects. Focusing then on lymphoma-associated EZH2 mutations, we show that Ezh2Y641F induces aberrant H3K27 methylation patterns even without wild-type Ezh2, which are alleviated by partial PRC2 inhibition. Remarkably, Ezh2Y641F rewires the response to PRC2 inhibition, leading to induction of antigen presentation genes. Using a unique longitudinal follicular lymphoma cohort, we further link EZH2 status to abnormal H3K27 methylation. We also uncover unexpected variability in the mutational landscape of successive biopsies, pointing to frequent co-existence of different clones and cautioning against stratifying patients based on single sampling. Our results clarify how oncogenic PRC2 mutations disrupt chromatin and transcription, and the therapeutic vulnerabilities this creates.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Histonas , Linfoma Folicular , Mutação , Complexo Repressor Polycomb 2 , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Linfoma Folicular/genética , Linfoma Folicular/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Histonas/metabolismo , Histonas/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Metilação , Cromatina/metabolismo , Cromatina/genética , Transcrição Gênica
5.
Clin Epigenetics ; 16(1): 54, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600608

RESUMO

The polycomb group (PcG) comprises a set of proteins that exert epigenetic regulatory effects and play crucial roles in diverse biological processes, ranging from pluripotency and development to carcinogenesis. Among these proteins, enhancer of zeste homolog 2 (EZH2) stands out as a catalytic component of polycomb repressive complex 2 (PRC2), which plays a role in regulating the expression of homologous (Hox) genes and initial stages of x chromosome inactivation. In numerous human cancers, including head and neck squamous cell carcinoma (HNSCC), EZH2 is frequently overexpressed or activated and has been identified as a negative prognostic factor. Notably, EZH2 emerges as a significant gene involved in regulating the STAT3/HOTAIR axis, influencing HNSCC proliferation, differentiation, and promoting metastasis by modulating related oncogenes in oral cancer. Currently, various small molecule compounds have been developed as inhibitors specifically targeting EZH2 and have gained approval for treating refractory tumors. In this review, we delve into the epigenetic regulation mediated by EZH2/PRC2 in HNSCC, with a specific focus on exploring the potential roles and mechanisms of EZH2, its crucial contribution to targeted drug therapy, and its association with cancer markers and epithelial-mesenchymal transition. Furthermore, we aim to unravel its potential as a therapeutic strategy for oral squamous cell carcinoma.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Metilação de DNA , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias Bucais/tratamento farmacológico , Complexo Repressor Polycomb 2/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico
6.
Mol Cell ; 84(7): 1178-1179, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579673

RESUMO

A new study in Molecular Cell by Guo et al.1 and two studies in Cell Reports by Healy et al.2 and by Hall Hickman and Jenner3 show how PRC2 and other chromatin regulators do not appear to bind RNA in vivo, challenging the importance of RNA for their function.


Assuntos
Complexo Repressor Polycomb 2 , RNA , RNA/genética , Complexo Repressor Polycomb 2/metabolismo , Cromatina/genética
7.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38652118

RESUMO

Chromatin-remodeling protein BRG1/SMARCA4 is pivotal for establishing oligodendrocyte (OL) lineage identity. However, its functions for oligodendrocyte-precursor cell (OPC) differentiation within the postnatal brain and during remyelination remain elusive. Here, we demonstrate that Brg1 loss profoundly impairs OPC differentiation in the brain with a comparatively lesser effect in the spinal cord. Moreover, BRG1 is critical for OPC remyelination after injury. Integrative transcriptomic/genomic profiling reveals that BRG1 exhibits a dual role by promoting OPC differentiation networks while repressing OL-inhibitory cues and proneuronal programs. Furthermore, we find that BRG1 interacts with EED/PRC2 polycomb-repressive-complexes to enhance H3K27me3-mediated repression at gene loci associated with OL-differentiation inhibition and neurogenesis. Notably, BRG1 depletion decreases H3K27me3 deposition, leading to the upregulation of BMP/WNT signaling and proneurogenic genes, which suppresses OL programs. Thus, our findings reveal a hitherto unexplored spatiotemporal-specific role of BRG1 for OPC differentiation in the developing CNS and underscore a new insight into BRG1/PRC2-mediated epigenetic regulation that promotes and safeguards OL lineage commitment and differentiation.


Assuntos
Diferenciação Celular , DNA Helicases , Oligodendroglia , Complexo Repressor Polycomb 2 , Animais , Camundongos , DNA Helicases/metabolismo , DNA Helicases/genética , Epigênese Genética , Histonas/metabolismo , Histonas/genética , Camundongos Endogâmicos C57BL , Neurogênese/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética , Remielinização , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
8.
Immunol Cell Biol ; 102(5): 298-301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606590

RESUMO

Epigenetic modifications, particularly through methylation of DNA packaging histones, play a pivotal role in controlling gene expression. Aberrant patterns of histone methylation have been associated with the development and progression of hematological malignancies. Unraveling the impact of aberrant histone marks on gene expression and leukemogenesis has spurred a concerted effort to develop clinically effective epigenetic therapies. In malignancies associated with the accumulation of histone H3 lysine trimethylation (H3K27me3), one such intervention involves preventing the deposition of this repressive histone mark by inhibiting the histone-modifying enzymes EZH1 and EZH2. While inhibition of EZH1/2 has demonstrated efficacy in both preclinical studies and clinical trials in various cancers, studies delineating the dynamic effect of EZH1/2 inhibition on H3K27me3 and disease relapse in clinical samples are lacking. In a recent publication, Yamagishi et al. explore how responses of a patient with adult T-cell leukemia/lymphoma to valemetostat, an EZH1/2 inhibitor, are associated with changes in H3K27me3, chromatin accessibility and gene expression, and how these changes can be circumvented in relapsed disease.


Assuntos
Epigênese Genética , Histonas , Leucemia-Linfoma de Células T do Adulto , Animais , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Histonas/metabolismo , Leucemia-Linfoma de Células T do Adulto/genética , Leucemia-Linfoma de Células T do Adulto/patologia , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética
9.
Mol Cell ; 84(6): 1049-1061.e8, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38452766

RESUMO

The Polycomb repressive complex 2 (PRC2) mediates epigenetic maintenance of gene silencing in eukaryotes via methylation of histone H3 at lysine 27 (H3K27). Accessory factors define two distinct subtypes, PRC2.1 and PRC2.2, with different actions and chromatin-targeting mechanisms. The mechanisms orchestrating PRC2 assembly are not fully understood. Here, we report that alternative splicing (AS) of PRC2 core component SUZ12 generates an uncharacterized isoform SUZ12-S, which co-exists with the canonical SUZ12-L isoform in virtually all tissues and developmental stages. SUZ12-S drives PRC2.1 formation and favors PRC2 dimerization. While SUZ12-S is necessary and sufficient for the repression of target genes via promoter-proximal H3K27me3 deposition, SUZ12-L maintains global H3K27 methylation levels. Mouse embryonic stem cells (ESCs) lacking either isoform exit pluripotency more slowly and fail to acquire neuronal cell identity. Our findings reveal a physiological mechanism regulating PRC2 assembly and higher-order interactions in eutherians, with impacts on H3K27 methylation and gene repression.


Assuntos
Processamento Alternativo , Complexo Repressor Polycomb 2 , Animais , Camundongos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Isoformas de Proteínas/genética
10.
J Gastrointestin Liver Dis ; 33(1): 44-56, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554427

RESUMO

BACKGROUND AND AIMS: The incidence and mortality of hepatocellular carcinoma (HCC) are increasing. It is urgent to develop more effective HCC biomarkers for diagnosis and treatment. This project intends to verify the expression of enhancer of zeste 1 polycomb repressive complex 2 subunit (EZH1) and its mechanism in HCC. METHODS: This study integrates global microarray and high-throughput sequencing datasets, combined with internal immunohistochemistry, to analyze the expression and prognostic value of EZH1 in HCC. Functional enrichment analysis was conducted to investigate transcriptional targets, which were achieved by intersecting HCC over-expressed genes, EZH1 co-expressed genes and putative transcriptional targets. The relationship between EZH1 and anticancer drugs was detected by drug sensitivity analysis. RESULTS: In this study, 84 datasets from 40 platforms (3,926 HCC samples and 3,428 non-cancerous liver tissues) were included to show the high expression of EZH1 in HCC. Immunohistochemistry with 159 HCC samples and 62 non-HCC samples confirmed the high expression level. HCC patients with high EZH1 expression had worse survival prognoses. Gene ontology and Reactome analysis revealed that metabolism-related pathways, including autophagy, are critical for HCC. Interestingly, as one of the EZH1 potential transcriptional targets, autophagy-related 7 (ATG7) appeared in the above pathways. ATG7 was positively correlated with EZH1, upregulated in HCC, and mediated poor prognosis. Upregulation of EZH1 was found to be in contact with HCC anti-tumor drug resistance. CONCLUSIONS: The upregulation of EZH1 expression can promote the occurrence of HCC and lead to poor clinical progression and drug resistance; these effects may be mediated by regulating ATG7.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Regulação para Cima , Relevância Clínica , Prognóstico , Regulação Neoplásica da Expressão Gênica
11.
Nat Commun ; 15(1): 1924, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429303

RESUMO

Balancing maintenance of self-renewal and differentiation is a key property of adult stem cells. The epigenetic mechanisms controlling this balance remain largely unknown. Herein, we report that the Polycomb Repressive Complex 2 (PRC2) is required for maintenance of the intestinal stem cell (ISC) pool in the adult female Drosophila melanogaster. We show that loss of PRC2 activity in ISCs by RNAi-mediated knockdown or genetic ablation of the enzymatic subunit Enhancer of zeste, E(z), results in loss of stemness and precocious differentiation of enteroblasts to enterocytes. Mechanistically, we have identified the microRNA miR-8 as a critical target of E(z)/PRC2-mediated tri-methylation of histone H3 at Lys27 (H3K27me3) and uncovered a dynamic relationship between E(z), miR-8 and Notch signaling in controlling stemness versus differentiation of ISCs. Collectively, these findings uncover a hitherto unrecognized epigenetic layer in the regulation of stem cell specification that safeguards intestinal homeostasis.


Assuntos
Proteínas de Drosophila , MicroRNAs , Feminino , Animais , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas do Grupo Polycomb , Intestinos , Complexo Repressor Polycomb 2/genética , MicroRNAs/genética
12.
Cell Cycle ; 23(3): 308-327, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38461418

RESUMO

Although the transcription factor nuclear factor κB (NF-κB) plays a central role in the regulation of senescence-associated secretory phenotype (SASP) acquisition, our understanding of the involvement of NF-κB in the induction of cellular senescence is limited. Here, we show that activation of the canonical NF-κB pathway suppresses senescence in murine dermal fibroblasts. IκB kinase ß (IKKß)-depleted dermal fibroblasts showed ineffective NF-κB activation and underwent senescence more rapidly than control cells when cultured under 20% oxygen conditions, as indicated by senescence-associated ß-galactosidase (SA-ß-gal) staining and p16INK4a mRNA levels. Conversely, the expression of constitutively active IKKß (IKKß-CA) was sufficient to drive senescence bypass. Notably, the expression of a degradation-resistant form of inhibitor of κB (IκB), which inhibits NF-κB nuclear translocation, abolished senescence bypass, suggesting that the inhibitory effect of IKKß-CA on senescence is largely mediated by NF-κB. We also found that IKKß-CA expression suppressed the derepression of INK4/Arf genes and counteracted the senescence-associated loss of Ezh2, a catalytic subunit of the Polycomb repressive complex 2 (PRC2). Moreover, pharmacological inhibition of Ezh2 abolished IKKß-CA-induced senescence bypass. We propose that NF-κB plays a suppressive role in the induction of stress-induced senescence through sustaining Ezh2 expression.


Assuntos
Senescência Celular , Inibidor p16 de Quinase Dependente de Ciclina , Fibroblastos , Quinase I-kappa B , NF-kappa B , Animais , Camundongos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Fibroblastos/metabolismo , Quinase I-kappa B/metabolismo , Quinase I-kappa B/genética , NF-kappa B/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética , Transdução de Sinais
13.
Genome Biol ; 25(1): 67, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468348

RESUMO

BACKGROUND: Bromo-adjacent homology-plant homeodomain domain containing protein 1 (BP1) is a reader of histone post-translational modifications in fungi. BP1 recognizes trimethylation of lysine 27 in histone H3 (H3K27me3), an epigenetic hallmark of gene silencing. However, whether and how BP1 participates in transcriptional repression remains poorly understood. RESULTS: We report that BP1 forms phase-separated liquid condensates to modulate its biological function in Fusarium graminearum. Deletion assays reveal that intrinsically disordered region 2 (IDR2) of BP1 mediates its liquid-liquid phase separation. The phase separation of BP1 is indispensable for its interaction with suppressor of Zeste 12, a component of polycomb repressive complex 2. Furthermore, IDR2 deletion abolishes BP1-H3K27me3 binding and alleviates the transcriptional repression of secondary metabolism-related genes, especially deoxynivalenol mycotoxin biosynthesis genes. CONCLUSIONS: BP1 maintains transcriptional repression by forming liquid-liquid phase-separated condensates, expanding our understanding of the relationship between post-translational modifications and liquid-liquid phase separation.


Assuntos
Histonas , Separação de Fases , Histonas/metabolismo , Expressão Gênica , Complexo Repressor Polycomb 2/metabolismo , Processamento de Proteína Pós-Traducional
14.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473991

RESUMO

In this study, we utilized an in vitro model consisting of human malignant melanoma as well as non-tumorigenic immortalized keratinocyte cells with the aim of characterizing the therapeutic effectiveness of the clinical epigenetic drug Tazemetostat alone or in combination with various isothiocyanates. In doing so, we assessed markers of cell viability, apoptotic induction, and expression levels of key proteins capable of mediating the therapeutic response. Our data indicated, for the first time, that Tazemetostat caused a significant decrease in viability levels of malignant melanoma cells in a dose- and time-dependent manner via the induction of apoptosis, while non-malignant keratinocytes were more resistant. Moreover, combinatorial treatment protocols caused a further decrease in cell viability, together with higher apoptotic rates. In addition, a significant reduction in the Polycomb Repressive Complex 2 (PRC2) members [e.g., Enhancer of Zeste Homologue 2 (EZH2), Embryonic Ectoderm Development (EED), and suppressor of zeste 12 (SUZ12)] and tri-methylating lysine 27 at Histone 3 (H3K27me3) protein expression levels was observed, at least partially, under specific combinatorial exposure conditions. Reactivation of major apoptotic gene targets was determined at much higher levels in combinatorial treatment protocols than Tazemetostat alone, known to be involved in the induction of intrinsic and extrinsic apoptosis. Overall, we developed an optimized experimental therapeutic platform aiming to ensure the therapeutic effectiveness of Tazemetostat in malignant melanoma while at the same time minimizing toxicity against neighboring non-tumorigenic keratinocyte cells.


Assuntos
Benzamidas , Compostos de Bifenilo , Histonas , Melanoma , Morfolinas , Piridonas , Humanos , Histonas/metabolismo , Complexo Repressor Polycomb 2/genética , Lisina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Apoptose
15.
Genetics ; 227(1)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38513719

RESUMO

Comparative approaches have revealed both divergent and convergent paths to achieving shared developmental outcomes. Thus, only through assembling multiple case studies can we understand biological principles. Yet, despite appreciating the conservation-or lack thereof-of developmental networks, the conservation of epigenetic mechanisms regulating these networks is poorly understood. The nematode Pristionchus pacificus has emerged as a model system of plasticity and epigenetic regulation as it exhibits a bacterivorous or omnivorous morph depending on its environment. Here, we determined the "epigenetic toolkit" available to P. pacificus as a resource for future functional work on plasticity, and as a comparison with Caenorhabditis elegans to investigate the conservation of epigenetic mechanisms. Broadly, we observed a similar cast of genes with putative epigenetic function between C. elegans and P. pacificus. However, we also found striking differences. Most notably, the histone methyltransferase complex PRC2 appears to be missing in P. pacificus. We described the deletion/pseudogenization of the PRC2 genes mes-2 and mes-6 and concluded that both were lost in the last common ancestor of P. pacificus and a related species P. arcanus. Interestingly, we observed the enzymatic product of PRC2 (H3K27me3) by mass spectrometry and immunofluorescence, suggesting that a currently unknown methyltransferase has been co-opted for heterochromatin silencing. Altogether, we have provided an inventory of epigenetic genes in P. pacificus to compare with C. elegans. This inventory will enable reverse-genetic experiments related to plasticity and has revealed the first loss of PRC2 in a multicellular organism.


Assuntos
Caenorhabditis elegans , Epigênese Genética , Evolução Molecular , Animais , Caenorhabditis elegans/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Histona Metiltransferases/metabolismo , Histona Metiltransferases/genética , Nematoides/genética , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo
16.
Int J Biochem Cell Biol ; 169: 106553, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417568

RESUMO

Given the high concentration of iron in the micro-environment of ovarian endometriosis, it is plausible to hypothesize that ectopic endometrial cells may be more susceptible to undergoing ferroptosis. Manipulation of ferroptosis has been explored as a potential therapeutic strategy to treat related diseases. In this study, we examined the impact on ectopic endometrial stromal cells (EESCs) of iron overload and an inducer of ferroptosis. We found that the iron concentration in the ovarian endometriosis was much higher than control samples. Treatment of cultured EESCs with ferric ammonium citrate (FAC) increase the sensitivity to undergo ferroptosis. By analyzing the RNA-seq results, it was discovered that zeste 2 polycomb repressive complex 2 subunit (EZH2) was significantly downregulated in ferroptosis induced EESCs. Moreover, overexpression of EZH2 effectively prevented the induction of ferroptosis. In addition, the activity or expression of EZH2 is directly and specifically inhibited by the methyltransferase inhibitor GSK343, which raises the sensitivity of stromal cells to ferroptosis. Taken together, our findings revealed that EZH2 act as a suppressor in the induced cell ferroptosis through a PRC2-independent methyltransferase mechanism. Therefore, blocking EZH2 expression and inducing ferroptosis may be effective treatment approaches for ovarian endometriosis.


Assuntos
Endometriose , Ferroptose , Sobrecarga de Ferro , Neoplasias Ovarianas , Feminino , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Endometriose/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Neoplasias Ovarianas/metabolismo , Sobrecarga de Ferro/metabolismo , Células Estromais/metabolismo , Ferro/metabolismo , Microambiente Tumoral
17.
Cell Rep ; 43(3): 113858, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38416645

RESUMO

RNA has been implicated in the recruitment of chromatin modifiers, and previous studies have provided evidence in favor and against this idea. RNase treatment of chromatin is commonly used to study RNA-mediated regulation of chromatin modifiers, but the limitations of this approach remain unclear. RNase A treatment during chromatin immunoprecipitation (ChIP) reduces chromatin occupancy of the H3K27me3 methyltransferase Polycomb repressive complex 2 (PRC2). This led to suggestions of an "RNA bridge" between PRC2 and chromatin. Here, we show that RNase A treatment during ChIP causes the apparent loss of all facultative heterochromatin, including both PRC2 and H3K27me3 genome-wide. We track this observation to a gain of DNA from non-targeted chromatin, sequenced at the expense of DNA from facultative heterochromatin, which reduces ChIP signals. Our results emphasize substantial limitations in using RNase A treatment for mapping RNA-dependent chromatin occupancy and invalidate conclusions that were previously established for PRC2 based on this assay.


Assuntos
Cromatina , Complexo Repressor Polycomb 2 , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Histonas/genética , RNA/genética , Heterocromatina , Ribonuclease Pancreático , Artefatos , DNA
18.
Cell Rep ; 43(3): 113856, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38416641

RESUMO

Polycomb repressive complex 2 (PRC2) modifies chromatin to maintain repression of genes specific for other cell lineages. In vitro, RNA inhibits PRC2 activity, but the effect of RNA on PRC2 in cells is less clear, with studies concluding that RNA either antagonizes or promotes PRC2 chromatin association. The addition of RNase A to chromatin immunoprecipitation reactions has been reported to reduce detection of PRC2 target sites, suggesting the existence of RNA bridges connecting PRC2 to chromatin. Here, we show that the apparent loss of PRC2 chromatin association after RNase A treatment is due to non-specific chromatin precipitation. RNA degradation precipitates chromatin out of solution, thereby masking enrichment of specific DNA sequences in chromatin immunoprecipitation reactions. Maintaining chromatin solubility by the addition of poly-L-glutamic acid rescues detection of PRC2 chromatin occupancy upon RNA degradation. These findings undermine support for the model that RNA bridges PRC2 and chromatin in cells.


Assuntos
Cromatina , Complexo Repressor Polycomb 2 , Complexo Repressor Polycomb 2/metabolismo , RNA/metabolismo , Artefatos , Ribonuclease Pancreático/metabolismo , Estabilidade de RNA
19.
PLoS One ; 19(2): e0296671, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394221

RESUMO

Bone marrow-derived CD34-positive (CD34+) endothelial progenitor cells (EPCs) has unique functions in the mechanism of compensatory lung growth (CLG). The content of this study is mainly to describe the effect of microRNA (miR)-155 in the mechanisms of EPCs and CLG. Our study found that transfection of miR-155 mimic could promote EPC proliferation, migration and tube formation, while transfection of miR-155 inhibitor had the opposite effect. It was also found that transfection of pc-JARID2 inhibited EPC proliferation, migration and tube formation, while transfection of si-JARID2 had the opposite effect. miR-155 can target and negatively regulate JARID2 expression. Overexpression of JARID2 weakened the promoting effects of miR-155 mimic on EPC proliferation, migration, and tubular formation, while silencing JARID2 weakened the inhibitory effects of miR-155 inhibitors on EPC proliferation, migration, and tubular formation. Transplantation of EPCs transfected with miR-155 mimic into the left lung model effectively increased lung volume, total alveolar number, diaphragm surface area, and lung endothelial cell number, while transplantation of EPCs co-transfected with miR-155 mimic and pc-JARID2 reversed this phenomenon. Overall, we found that miR-155 activates CD34+ EPC by targeting negative regulation of JARID2 and promotes CLG.


Assuntos
Células Progenitoras Endoteliais , Pulmão , MicroRNAs , Antígenos CD34/metabolismo , Movimento Celular , Proliferação de Células , Células Progenitoras Endoteliais/metabolismo , Pulmão/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Camundongos , Complexo Repressor Polycomb 2/metabolismo
20.
Elife ; 132024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346162

RESUMO

The Polycomb Repressive Complex 2 (PRC2) methylates H3K27 to regulate development and cell fate by transcriptional silencing. Alteration of PRC2 is associated with various cancers. Here, we show that mouse Kdm1a deletion causes a dramatic reduction of PRC2 proteins, whereas mouse null mutation of L3mbtl3 or Dcaf5 results in PRC2 accumulation and increased H3K27 trimethylation. The catalytic subunit of PRC2, EZH2, is methylated at lysine 20 (K20), promoting EZH2 proteolysis by L3MBTL3 and the CLR4DCAF5 ubiquitin ligase. KDM1A (LSD1) demethylates the methylated K20 to stabilize EZH2. K20 methylation is inhibited by AKT-mediated phosphorylation of serine 21 in EZH2. Mouse Ezh2K20R/K20R mutants develop hepatosplenomegaly associated with high GFI1B expression, and Ezh2K20R/K20R mutant bone marrows expand hematopoietic stem cells and downstream hematopoietic populations. Our studies reveal that EZH2 is regulated by methylation-dependent proteolysis, which is negatively controlled by AKT-mediated S21 phosphorylation to establish a methylation-phosphorylation switch to regulate the PRC2 activity and hematopoiesis.


Assuntos
Proteínas de Ligação a DNA , Histonas , Animais , Camundongos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Hematopoese , Histonas/metabolismo , Metilação , Fosforilação , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...